
CyDrone
Kenneth Lange - Team Leader

Alain Njipwo - Chief Hardware Developer

Daniil Olshanskyi - Chief Software Developer

Luke Bell - Chief Interface Developer

Max Medberry - Chief Backend Developer

Advised by Dr. Ali Jannesari

Sdmay20_47

https://sdmay20-47.sd.ece.iastate.edu/

https://sdmay20-47.sd.ece.iastate.edu/

Project overview
● Build a custom drone

○ ZED Camera

○ Nvidia Jetson

○ Pixhawk

● Simulation Environment

○ Unreal Engine

○ AirSim

Problem statement
● Real-time Processing

● Custom Drone

● Expandability

○ Modular Code

○ Documentation

Conceptual/Visual Sketch

Figure 1: Volumetric Analysis Figure 2: Autonomously Follow

Target

Functional requirements
○ Set up simulation environments with various features

○ Simulation must be able to be used for machine learning

○ Assemble the drone itself

○ Drone must be stable when flying

○ Drone must be controllable using RC

○ Drone must be able to carry Nvidia Jetson SoC computer

○ Drone must be controllable programmably

Non-functional (technical, other constraints, considerations)
● Non-functional

○ Software will be modular and well-structured

○ Code will be well documented, both via comments and a wiki

○ Hardware assembly instructions will be documented

● Technical and/or other constraints

○ Need to do research/testing to learn how to build the drone and calibrate it for

stable flight

○ Need to learn new software technologies (Unreal Engine, AirSim, ROS, PX4)

Potential risks and mitigations
● Custom drone

○ Complex, expensive parts with long waits on ordering

○ Mitigation

■ Thoroughly research required parts, use care when handling and testing drone

● System integration

○ Project relies on multiple third party software systems to interface reliably

○ Mitigation

■ Use one LTS version of each software, where compatibility is guaranteed

● Simulation to Real World

○ Drone hardware and sensors may behave differently in real world compared to simulation

○ Mitigation

■ Begin testing in real world with safe environments, empty room, padding/nets, etc.

Resource/Cost estimation
● Software

○ All software used in the project is free and open source

■ Ubunutu 16.04/18.04

■ AirSim

■ ROS

● Hardware

○ The client is covering hardware costs for the drone

■ Nvidia Jetson TX2 - $450

■ UAV Chassis - $190

■ Large, powerful LiPo battery - $110

■ ESCs / Rotors / Blades x 4 - $230

■ ZED Camera - $450

■ PC with powerful CPU and GPU to quickly train RLA

Project milestones and schedule
● Researching hardware/Drone Assembly

○ Weeks 1-15

● Researching simulation/AirSim Environments

○ Weeks 1-15

● Training RLA in AirSim

○ Weeks 16-18

● RC drone flight

○ Weeks 16-28

● Jetson drone flight

○ TBD

● Autonomous drone flight

○ TBD

Functional decomposition

Detailed design - Parts & Frame assembly

Source: http://www.helipal.com/tarot-x4-quadcopter-frame-set.html

http://www.helipal.com/tarot-x4-quadcopter-frame-set.html

Detailed Hardware design - 1:Power Components
● Carbon Fiber Propellers x 4

● 4s 4006 DC Brushless motors x 4

● FlyColor 35 A ESC boards x 4

● FS-IA10B Receiver x 1

● PixHawk x 1

● Battery: Venom 4 Cell 5000mah 14.8 V

Source: http://www.helipal.com/tarot-x4-quadcopter-frame-set.html

http://www.helipal.com/tarot-x4-quadcopter-frame-set.html

Detailed Hardware Design - 2 : Power Components

Detailed design - Software
● Based around working with RLA

● AirSim Python API to send

movement commands to drone

(real-world & simulation)

● AirSim retrieves images & depth

from UE to send to RLA

● DroneServer converts AirSim

commands to MavLink to send to

PX4 (real-world)

● ZED Python API to interface with

camera inside RLA (real-world)

HW, SF, Technology platforms used
● Hardware

○ Tarot 650 Drone Platform

○ PX4 Pixhawk Flight Control Platform

○ Nvidia Jetson Mobile Computing Platform

● Software

○ Ubuntu (16.04 & 18.04)

○ AirSim & Unreal Engine

○ PX4 Firmware & QGroundControl

○ Robot Operating System (ROS)

Test plan
● Hardware Testing

○ Sensor calibration testing

○ Drone RC controls test (no blades)

○ RC-controlled test flight

○ ZED camera diagnostic test

● Software Testing

○ Simulation AI script testing

○ Controlling simulated drone with ROS-AirSim

○ Controlling drone with software (no blades)

● Second Prototype: Unreal Engine + AirSim &

custom Tarot quadcopter chassis with Nvidia

Jetson TX2

○ UE + AirSim worked better for us

○ New chassis & onboard computer capable

enough for requirements of client

Prototype Implementations
● Initial Prototype: ROS + Gazebo & small

drone with Raspberry Pi

○ Identified issues with Gazebo

○ Client required larger drone & more

powerful computing platform

Engineering Standards and Design Practices
Hardware Standards:
● PX4 flight stack and ArduPilot
● CAN
● MavLink protocol

Software Practices/Standards:
● GIT
● AirSim API
● Client-server
● ROS

Team contributions
● Kenneth Lange - Simulation setup, simulation environments,

simulation maintenance

● Alain Njipwo - Drone assembly, hardware and hardware connectivity,

Pixhawk controller

● Daniil Olshanskyi - Simulation setup, simulation human AI, Pixhawk

controller, Jetson-Pixhawk interaction

● Luke Bell - Stereo camera, ROS, ROS-AirSim interaction

● Max Medberry - wind simulation, ROS, ROS-Airsim interaction

Current status
● Simulation and simulation environments are operational and RLA is trained

● Drone is fully flight-capable and stable

● Drone can be controlled from RC and from Jetson (possibly at the same time)

● Images from the stereo camera can be fetched to be reframed and processed by

the control algorithm

Future of the project - Dr. Ali Jannesari’s project
● Test programmable drone controls (safe environment)

● Test drone fully assembled

● Test drone autonomous flight

● Apply and test volumetric analysis

● Develop different control algorithms

Thank you for your attention!

